

Master Thesis Defense

19th October 2015

Automatic Classification of Non-Mass Breast Lesions in DCE-MRI

Mohammad Razavi

Supervisors: Prof. Gabriel Zachmann Prof. Udo Frese

Advisor: Lei Wang

Motivation

A picture is worth a thousand words

Presentation Structure

Theoretical background

Breast cancer

Female Breast Structure

- Breast tissues

- 1. **Fibroglandular** tissue (working part)
 - Mammary gland produces milk by lobes
 - Ducts, muscle, and connective tissue
- 2. Fatty tissue (non-functioning part)
 - Protecting tissue
 - Often takes the majority of breast

Breast density

- The ratio of fibroglandular tissue to breast volume
- The more fat, the less dense the breast
- Women with dense breasts are at greater risk for breast cancer

Lobules or ducts are the places that cancer develops

Breast Cancer

- Normal breast cells are altered in appearance and functionality
- They start growing disorderly and create a tumor
- Breast cancer may take up to 10 or more years

Normal cells

Cells forming a tumour

Breast Dynamic contrast-enhanced MRI (DCE-MRI)

- > Analyzes the vessels (tumor vessels structurally differ from the normal ones)
- Rapidly growing in tumors:
 - Heterogeneous vasculature
 - Leaky & fragile capillaries with openings in walls
 - permeability let fast diffusion of contrast agent to the tumor

7/49

fairview.org

Breast Dynamic contrast-enhanced MRI (DCE-MRI)

 \bigcirc

Types of breast tumors

By Invasiveness:

- 1. Invasive: Tending to spread to other tissues
- 2. Non-invasive: Abnormalities in cells, have not spread to outer tissues

- By Mass:
 - 1. Mass-like
 - Compact regions
 - Noticeable from the healthy tissue
 - 2. Non-mass-like
 - Complex distribution patterns
 - Dispersed among normal tissue.

Mass-like enhancement

Non-Mass-like enhancement

Benign vs Malignant lesions

- Benign tumors (non-cancerous)
 - Non-spreadable
 - Removable

 \bigcirc

Malignant tumors (cancerous)

- Uncontrollable growth
- Tend to metastasize

imgbucket.com

Morphological differences of lesions

 \bigcirc

Method outline

Method outline

Motion Correction

- Purpose:
 - Compensates motions occurred during image acquisition
 - Improves difference image quality
- Possible patient motions
 - 1. Respiratory motion
 - 2. Muscle relaxation
 - 3. Coughing

No motion

Moderate motion in both breasts

Semi-automatic lesion Segmentation

- 1. Bounding box separation from subtraction image
- 2. Applying mean shift segmentation
- 3. Rescale intensity to unit values

 \bigcirc

4. Thresholding the intensity value

Segmentation results

Benign Lesions

Malignant Lesions

Sphere Packing

- Filling an object with **non-overlapping spheres** with arbitrary radii
- 1. Embedding the largest possible sphere into the object
- 2. Inserting new spheres iteratively:
 - A. Must not intersect already existing ones
 - B. Be completely inside the object

Normalization

Scaling by overall maxima method

Mapping spheres' components (x, y, z and radius) to the unit range For all components:

- 1. Maximum and Minimum values are computed
- 2. subtracted by Minimum value
- **3**. Divided by difference value

# 4	x	у	z	R	
0	-75.3692	-37.7979	11.8563	2.1406	
1	-85.1198	-29.7031	6.5474	0.7516	
2	-85,8355	-37.0971	8.0866	0.5956	
3	-84.9846	-33.1219	11.8964	1.1526	
4	-74.7476	-35.0559	11.9773	0.673	
•					

Not normalized sphere components

$$x_0 = \frac{(x_0 - \min)}{(\max - \min)}$$

Normalized sphere components

Feature extraction

- Volume-Radius Histogram
- 3D Spherical Shape Histogram
- Graph Topological Features
- Zernike Invariant Moments

Volume-Radius Histogram

- benign Lesions
 - Big spheres filled most of their volume
- malignant Lesions
 - Middle size spheres filled most of their volume
- Histogram is formed by
 - X-axis: radius range of spheres divided by number of bins
 - Y-axis: summation of spheres' volume with radius in bin range

2D Shape Histogram - The Idea

- Uses uniformly distributed elements of a shape.
- A histograms based on a partitioning of the space in which the objects reside
- A complete and disjoint decomposition into cells, which correspond to the bins of the histograms

2D section coding

48 combined bins

4 shell bins

3D Spherical Shape Histogram

- A surrounding wireframe with internal space partitioning:
 - Sectors: vertical lines (longitude); Rings: horizontal lines (latitude); Shells: concentric spheres
- Histogram x-axis: the bins represent each partition, starting from the most centric one
- Histogram y-axis: the number of spheres' center points inside each partition

Strategies for choosing spherical wireframe center point

- 1. In the mean distance of the all spheres' center points
- 2. In the middle of the two most distant spheres
- 3. In the center of the biggest sphere
- 4. According to the Smallest Enclosing Ball of Balls algorithm

The filled-portion feature

- Occupied proportion of the surrounding wireframe sphere
- In benign lesions
 - the surrounding sphere is more occupied than the malignant ones.

- Benign lesions -> closer to one
- Malignant lesions > closer to zero

Graph construction

- For each packed lesion:
 - Center point of embedded spheres are considered as nodes
 - Spatial relationship between nodes is translated into edges

Fireworks Graph

Relative Neighborhood

Graph

Kruskal's Minimum Spanning Tree

Gabriel Graph

Prim's Minimum Spanning Tree

Beta-Skeleton Graph

Graph clustering

- Spatial constraints deconstruct graph into subgraphs
- *K_{max}*: the neighborhood distance
 - Low values -> more clusters

Global and local graph based features can be extracted

Graph characteristics

- Graph compactness:
 - The completeness and being dense

Compactness based on edge density:

$$\frac{E}{N}$$
, $\frac{E}{N^2}$

The Stratum (St)

- Captures the linear structure of the graph
 - Zero -> circular structure
 - One -> linear structure
- Linear Absolute Prestige (LAP)

LAP =
$$\begin{cases} \frac{n^3}{4}, & \text{if } n \text{ is even} \\ \frac{n^3 - n}{4}, & \text{if } n \text{ is odd.} \end{cases}$$

New compactness Index:

Compactness index:

$$p^* = rac{{\sum\limits_{i = 1}^{N - 1} {\sum\limits_{j = i + 1}^{N} {sim(v_i, v_j)} } }}{{N(N - 1)/2}}$$

 $Cp = rac{Max - \sum\limits_{i=1}^{N-1} \sum\limits_{j=i+1}^{N} d(v_i,v_j)}{Max - Min}$

C

 $St = absolute \ prestige / LAP.$

Famous graph topology indices

Evaluating clustering algorithms

- Indices based on diameter and distance
 - Dunn's index

$$D(C) = rac{d(C_i, C_j)}{diam(C_h)}$$

• Davies Bouldin index

$$DB = rac{1}{K}\sum_{i=1}^{K} \max_{j
eq i} \left[rac{diam(C_i) + diam(C_j)}{d(C_i,C_j)}
ight]$$

- Indices based on inter & intra-cluster edges
 - MinMaxCut

$$MinMaxCut = \sum_{i=1}^{K} rac{E_i'}{E_i}$$

- Indices using number of nodes and links
 - Modularization quality MQ

$$egin{aligned} \operatorname{int} ra(C_i) &= rac{E_i}{N_i(N_i-1)/2} &\operatorname{int} er(C_i,C_j) &= rac{E_{ij}}{N_iN_j} \ Let \ define \ \overline{\operatorname{int} ra} &= rac{\sum\limits_{i=1}^K rac{E_i}{N_i(N_i-1)/2}}{K} \ and \ \overline{\operatorname{int} er} &= rac{\sum\limits_{i< j}^K rac{E_{ij}}{N_iN_j}}{K(K-1)/2} \ MQ &= \overline{\operatorname{int} ra} - \overline{\operatorname{int} er} &= rac{\sum\limits_{i=1}^K rac{E_i}{N_i(N_i-1)/2}}{K} - rac{\sum\limits_{i< j}^K rac{E_{ij}}{N_iN_j}}{K(K-1)/2} \end{aligned}$$

• A new index denoted MQ*

$$MQ^* = rac{\sum\limits_i E_i}{\sum\limits_i rac{N_i(N_i-1)}{2}} - rac{\sum\limits_{i < j} E_{ij}}{\sum\limits_{i < j} N_i N_j}$$

All calculated graph features

No. nodes: 200 No. Edges: 345 K-Max: 4 No. Clusters: 3

Feature	Value	Feature	Value
Edge Density	1.725	Coverage	0.57971013
Edge Density*	0.0086249998	Modularization quality MQ	-34.993408
Compactness Index Cp	0.24017853	New MQ*	0.037906155
New Cp*	0.13441421	Global Silhouette index (GS)	0.48201945
Linear Structure (Stratum)	0.080078728	New GS*	0.44905704
Dunn's Index	0.37598059	Jaccard Coefficient	0
Davies Bouldin	2.3165514	Folkes and Mallows index	0
MinMaxCut	0.0077294684	Rand Statistic	0.61100501
Cohesion	20.242949	Hubert and Arabie's statistic	0

No. nodes: 200
No. Edges: 260
K-Max: 3
No. Clusters: 5

Feature	Value	Feature	Value
Edge Density	1.3	Coverage	0.76923078
Edge Density*	0.12267283	Modularization quality MQ	-14.527812
Compactness Index Cp	0.12267283	New MQ*	0.044762693
New Cp*	0.09278556	Global Silhouette index (GS)	0.50787872
Linear Structure (Stratum)	0.048521247	New GS*	0.44993725
Dunn's Index	0.31838393	Jaccard Coefficient	0
Davies Bouldin	2.4751117	Folkes and Mallows index	0
MinMaxCut	0.016153846	Rand Statistic	0.75879395
Cohesion	13.591794	Hubert and Arabie's statistic	0

3D Zernike Descriptors

- A rotation, translation and scale invariant numerical expression of a 3D object
- Zernike Moments
 - The projection of the voxelized image onto orthogonal basis functions.

3D Zernike functions Z_{53}^m and Z_{82}^m

Development

Processing framework
 Integration in CADx tool

Processing framework in MevisLab

1. Pre-processing

 \bigcirc

- Motion correction
- 2. Segmentation
- 3. Sphere Packing
- 4. Normalization
- 5. Feature Extraction
 - 1. Volume-Radius Histogram
 - 2. 3D Shape Histogram
 - 3. Graph topological features
 - 4. Zernike Features

Framework integration into CADx tool

Import Process	
	Lesion Segmentation
	Roundishness: << < 25 % > >> 2
	Show subtraction image
	Color Alpha factor 1
	Markers
	Highlight Selection Text Mode: Off
	Color Mode: Type V Alpha: 1
	Deletion Mode (Shift key) No. Markers:
	Refresh Segmentation
	Lesion
All shares and shares and a second of the second states and the se	
100 mm	
	Lesion type: Benian

Evaluation

- Dataset Machine learning algorithm Performance measures
- Feature selection

Image Dataset

- MR breast volumes from 86 different patients diagnosed having non-mass lesions
- Age: 23 76 years (45.84 ± 11.97)
- Within years 2003 2009 from the Radboud University Nijmegen in the Netherlands.
- Resolution 256x128x80 to 512x256x16
- Reference lesion binary masks: manually annotated by an experienced radiologist.

Ground truth

- 106 lesion enhancements acquired from segmentation step
 - 38 benign

Random Forest

- By random selection of features constructs a collection of decision trees with controlled variance
- Outputs the class that is the mode of the classes

 (classification) or mean
 prediction (regression) of the
 individual trees

Performance Measures

- Confusion matrix
- Accuracy
- Precision
- AUC: Area under receiver operating characteristic (ROC) curve

Machine learning technique

- Random Forest
- IO-fold cross validation

Class \Recognized	as Positive	as Negative
Positive	t_p	f_n
Negative	f_p	t_n

$$accuracy = \frac{t_p + t_n}{t_p + f_p + f_n + t_n}$$

$$precision = \frac{t_p}{t_p + f_p}$$

Area Under ROC Curve (AUC)

- Illustrates the performance of a binary classifier
 - How well the test separates the groups
- By plotting the true positive rate (TPR) (sensitivity) against the false positive rate (FPR) (fall-out = 1 - specificity) at various threshold settings
 - y-axis: true positive rate
 - x-axis: false positive rate
 - An area of 1 represents a perfect test
 - An area of 0.5 represents a worthless test wikipedia.org

K-Fold Cross Validation method

- Partitioning a sample of data into complementary subsets
 - Performing the analysis on one subset (training set)
 - validating using other subset (validation set or testing set).
- Multiple rounds of crossvalidation are performed using different partitions
- The validation results are averaged over the rounds
- Here, 10-Fold is used

Feature Combination (All features)

- A serial combination of all 252 best features (brute force search) including:
 - 1. **50 features:** volume-radius histogram features
 - 50 histogram bins
 - 2. 111 features: 3D shape histogram features
 - 11 rings, 10 shells, and 1 sector (11x10x1=110)
 - Wireframe center: in middle of the two most distant spheres
 - 3. 72 features: Zernike descriptor features
 - Maximum Order of 15
 - 4. 15 features: graph topological features
 - K_{max} equal to number of nodes (n)
 - A Gabriel graph with no clustering

Evaluation results of all features using Random Forest classifier

Measure	value for all the features
Accuracy	89.92
Precision	89.7
AUC	0.9

Classification accuracy only based on volume-radius histogram

Number of Histpgram Bins

42/49

Classification accuracy only from Zernike features with different orders

hoosin	g clo	assi	fier			₽		+ + + + + + + + + + + + + + + + + + +	* * * * * * * * *
					0.5 -				
						+ /			
ML Algorithm	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class		
ML Algorithm	TP Rate 0.956	FP Rate 0.184	Precision 0.903	Recall 0.956	F-Measure 0.929	ROC Area 0.929	Class 0 (Malignant)		
ML Algorithm	TP Rate 0.956 0.816	FP Rate 0.184 0.044	Precision 0.903 0.912	Recall 0.956 0.816	F-Measure 0.929 0.861	ROC Area 0.929 0.929	Class 0 (Malignant) 1 (Benign)		× Naive Bayes
ML Algorithm	TP Rate 0.956 0.816 0.906	FP Rate 0.184 0.044 0.134	Precision 0.903 0.912 0.906	Recall 0.956 0.816 0.906	F-Measure 0.929 0.861 0.904	ROC Area 0.929 0.929 0.929	Class 0 (Malignant) 1 (Benign) Weighted Avg.		× Naive Bayes + Ada Boost
ML Algorithm	TP Rate 0.956 0.816 0.906 0.559	FP Rate 0.184 0.044 0.134 0.211	Precision 0.903 0.912 0.906 0.826	Recall 0.956 0.816 0.906 0.559	F-Measure 0.929 0.861 0.904 0.667	ROC Area 0.929 0.929 0.929 0.929 0.781	Class 0 (Malignant) 1 (Benign) Weighted Avg. 0 (Malignant)		× Naive Bayes + Ada Boost ◇ Random Fores
ML Algorithm nodom Forest NaiveBayes	TP Rate 0.956 0.816 0.906 0.559 0.789	FP Rate 0.184 0.044 0.134 0.211 0.441	Precision 0.903 0.912 0.906 0.826 0.5	Recall 0.956 0.816 0.906 0.559 0.789	F-Measure 0.929 0.861 0.904 0.667 0.612	ROC Area 0.929 0.929 0.929 0.929 0.781 0.68	Class 0 (Malignant) 1 (Benign) Weighted Avg. 0 (Malignant) 1 (Benign)		× Naive Bayes + Ada Boost ◇ Random Fores
ML Algorithm	TP Rate 0.956 0.816 0.906 0.559 0.789 0.642	FP Rate 0.184 0.044 0.134 0.211 0.441 0.293	Precision 0.903 0.912 0.906 0.826 0.5 0.709	Recall 0.956 0.816 0.906 0.559 0.789 0.642	F-Measure 0.929 0.861 0.904 0.667 0.612 0.647	ROC Area 0.929 0.929 0.929 0.781 0.68 0.745	Class 0 (Malignant) 1 (Benign) Weighted Avg. 0 (Malignant) 1 (Benign) Weighted Avg.	0.5	× Naive Bayes + Ada Boost ◇ Random Fores
ML Algorithm	TP Rate 0.956 0.816 0.906 0.559 0.789 0.642 0.912	FP Rate 0.184 0.044 0.134 0.211 0.441 0.293 0.158	Precision 0.903 0.912 0.906 0.826 0.5 0.709 0.912	Recall 0.956 0.816 0.906 0.559 0.789 0.642 0.912	F-Measure 0.929 0.861 0.904 0.667 0.612 0.647 0.912	ROC Area 0.929 0.929 0.929 0.781 0.68 0.745	Class 0 (Malignant) 1 (Benign) Weighted Avg. 0 (Malignant) 1 (Benign) Weighted Avg. 0 (Malignant)	0.5	× Naive Bayes + Ada Boost ◇ Random Fores
ML Algorithm modom Forest NaiveBayes AdaBoost	TP Rate 0.956 0.816 0.906 0.559 0.789 0.642 0.912 0.842	FP Rate 0.184 0.044 0.134 0.211 0.441 0.293 0.158 0.088	Precision 0.903 0.912 0.906 0.826 0.5 0.709 0.912 0.942	Recall 0.956 0.816 0.906 0.559 0.789 0.642 0.912 0.842	F-Measure 0.929 0.861 0.904 0.667 0.612 0.647 0.912 0.842	ROC Area 0.929 0.929 0.929 0.781 0.68 0.745 0.899 0.899	Class 0 (Malignant) 1 (Benign) Weighted Avg. 0 (Malignant) 1 (Benign) Weighted Avg. 0 (Malignant) 1 (Benign)	0.5	× Naive Bayes + Ada Boost ◇ Random Fores

Feature Selection in Random Forest (Top 30)

- Mean Decrease Accuracy
 - How well the model actually predicts
- Mean Decrease Gini
 - Reflects the overall goodness of fit.
- The MDA is thought to be a better measure

Evaluation results using Random Forest classifier

Measure	MDA	MDG
Accuracy	89.6	89.6
Precision	89.6	90.6
AUC	0.957	0.963

VolRadHisto09 VolRadHisto10 VolRadHisto05 VolRadHisto11 VolRadHisto06 VolRadHisto07 Zenike09 Graph newCP* ShapeHisto69 Zenike01 Zenike03 VolRadHisto16 Zenike04 VolRadHisto08 ShapeHisto80 Zenike07 VolRadHisto19 Zenike08 Graph LinearStructure VolRadHisto12 VolRadHisto04 VolRadHisto13 Graph Dunn'sIndex VolRadHisto30 VolRadHisto15 VolRadHisto21 ShapeHistoPortion VolRadHisto18 ShapeHisto28 VolRadHisto44

Mean Decrease Accuracy (MDA)

	O	VolRadHisto09
	0	VolRadHisto10
	Θ	VolRadHisto06
	• • • • • • • • • • • • • • • • • • •	VolRadHisto11
	O	VolRadHisto07
	0	VolRadHisto05
	0	Graph newCP*
	0	VolRadHisto08
	o	VolRadHisto16
	0	VolRadHisto10
		VolDadListo12
	ŏ	Craph LipparStructure
	ŏ	
	ő	VolRadHisto04
	0	VOIRADHISIO13
		VolRadHisto21
	0	Zenike01
		ShapeHisto69
	0	Graph Dunn'sIndex
Э	•••••••••••••••••••••••••••••••••••••••	Zenike04
	0	VolRadHisto17
	0	Zenike09
	O	Zenike03
	0	VolRadHisto15
	0	Zenike07
	0	VolRadHisto23
	00	VolRadHisto14
	0	Zenike08
	0	VolRadHisto18
	0	VolRadHisto//
	0	Shano Histo 80
		onapernstooo
	4 5 6 7	

eHisto80 0.0 0.4 0.8 Mean Decrease Gini (MDG)

46/49

1.2

Principal component analysis (PCA)

- Linearly transforms a high-dimensional input vector into a low-dimensional
 - by calculating the eigenvectors of the covariance matrix
- Eventually, only 5 principal components are left

Evaluation results using RF classifier

Measure	PCA on MDA	PCA on MDG
Accuracy	89.6	89.6
Precision	89.6	89.6
AUC	0.965	0.972

r-bloggers.com

Summary

Summary & conclusion

- The goal:
 - Classification of the non-mass lesions using only morphological features
- Approaches:
 - Using sphere packing
 - Evaluating the performance real clinical breast MRI data.
- Results:
 - Accuracy of 89.6%, Precision of 89.6%, AUC of 0.972
 - Using RF, MDA, PCA and 10-fold cross validation
 - Morphological features can be used for classification

Future work

- Combination with kinetic and textural features
- More advanced segmentation algorithms
- Normalization of volumetric data
- 3D shape histogram step:
 - Volume enclosed by partition
 - Wireframe sphere orientation
- Evaluation:
 - More advanced ML techniques
 - ANN and deep learning

